PRT3789, a First-in-Class Intravenous SMARCA2 Degrader, in Advanced Solid Tumors With a *SMARCA4* Mutation: Phase 1 Trial

Timothy A. Yap,¹ Afshin Dowlati,² Ibiayi Dagogo-Jack,³ Julien Vibert,⁴ Alexander I. Spira,⁵ Victor Moreno,⁶ Salman R. Punekar,⁷ Emiliano Calvo,⁸ Guru P. Sonpavde,⁹ Mark Awad,¹⁰ Jonathan W. Riess,¹¹ Tatiana Hernández-Guerrero,¹² Benjamin Herzberg,¹³ Antoine Italiano,¹⁴ Aurelie Swalduz,¹⁵ Ticiana A Leal,¹⁶ Patricia LoRusso,¹⁷ Egbert F. Smit,¹⁸ Edward B. Garon,¹⁹ William Novotny,²⁰ Robin Guo²¹

¹Department of Investigational Cancer Therapeutics, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA; ²Department of Medicine, University Hospitals Seidman Cancer Center and Case Western Reserve University, Cleveland, OH, USA; ³ Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; ⁴Department of Oncology Medicine, Gustave Roussy, Villejuif, France; ⁵Department of Clinical Research, Virginia Cancer Research (VCS) Research Institute, NEXT Oncology-Virginia, Fairfax, VA, USA; ⁶Early Phase Clinical Trial Unit, START Madrid-FJD, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain; ¹Division of Hematology and Oncology, NYU Langone Health, New York, NY, USA; ⁶Early Phase Clinical Drug Development in Oncology, START Madrid-ClOCC, Centro Integral Oncológico Clara Campal, Madrid, Spain; ⁰Department of Genitourinary Oncology, AdventHealth Cancer Institute, Orlando, FL, USA; ¹¹Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; ¹¹Department of Thoracic Oncology, UC Davis Comprehensive Cancer Center, Sacramento, CA, USA; ¹²Department of Medical Oncology, START Barcelona - HM Nou Delfos, Barcelona, Spain; ¹³Department of Medicine, Columbia University Herbert Irving Comprehensive Cancer Center, New York, NY, USA; ¹⁴Early Phase Trials and Sarcoma Units, Institut Bergonié, Bordeaux, France; ¹⁵Department of Medical Oncology, Léon Bérard Centre, Lyon, France; ¹⁶Department of Hematology and Medical Oncology Winship Cancer Institute of Emory University, Atlanta, GA, USA; ¹¹Department of Pulmonology, Universiteit Leiden, Netherlands; ¹⁰Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; ²⁰Clinical Development, Prelude Therapeutics Incorporated, Wilmington, DE, USA; ²¹Department of Gynecologic Medical Oncology, Memorial Sloan Kettering Cancer Center, Commack, NY, USA

Saturday, 8 March 2025

Session Theme: Rare Cancer / Cancer of Unknown Primary

Abstract Number: 101356

22nd Japanese Society of Medical Oncology (JSMO) Annual Meeting | March 6 - 8, 2025 | Kobe, Japan

SMARCA4 Mutations in NSCLC and Other Solid Tumors

- SMARCA4 is inactivated in a variety of cancers and considered a tumor suppressor¹
- In NSCLC, SMARCA4 mutations are observed in ~10% of cases, and are associated with more aggressive and invasive disease and poor clinical outcomes^{2,3}
- *SMARCA4* mutations are classified as class 1 mutations (truncating mutations, fusions, and homozygous deletion) and class 2 mutations (missense mutations)²
- Therapies that target SMARCA4-deficient cancers are not available. However, SMARCA4-mutated cancers become reliant on SMARCA2 and selectively degrading SMARCA2 offers an attractive approach to induce synthetic lethality in SMARCA4-mutant tumors

PRT3789: An Intravenous SMARCA2 Degrader

- Highly potent (plasma DC₅₀ = 21 nM)
- Selective for SMARCA2 over SMARCA4
- Induces synthetic lethality in various CDX and PDX mouse models of SMARCA4-deficient cancer at well-tolerated doses
- Unlike an inhibitor, a SMARCA2 degrader achieves prolonged chromatin regulation through disrupting the SWI/SNF complex in SMARCA4-deficient cancer cells
- In our experience, we are able to achieve greater selectivity with a degrader as compared with an inhibitor

Study Schema and Enrollment PRT3789 Monotherapy

Dose-Escalation Cohorts

Backfill Cohorts

n=4

Demographics and Disease Characteristics PRT3789 Monotherapy

Demographics and Disease Characteristics

Characteristics	Patients (N=69)
Age, years	
Median	62
Sex, n (%)	
Male	37 (53.6)
Female	32 (46.4)
Prior lines of systemic anticancer therapy, n	
Median (min, max)	3 (1, 10)
Tumor type, n (%)	
Non-small cell lung cancer	32 (46.4)
Pancreatic cancer	6 (8.7)
Breast cancer	4 (5.8)
Thoracic undifferentiated	3 (4.3)
Cholangiocarcinoma	2 (2.9)
Colorectal cancer	2 (2.9)
Esophageal cancer	2 (2.9)
Gastric cancer	2 (2.9)
Small intestine cancer	2 (2.9)
Other	14 (20.3)
Type of SMARCA4 mutation, n (%)	
Class 1 (loss of function)	39 (56.5)
Class 2 (missense, VUS)	22 (31.9)
Loss of SMARCA4 protein (BRG1) by IHC	8 (11.6)

Summary of Adverse Events PRT3789 Monotherapy

Adverse Events, n (%)	PRT3789 Monotherapy (N=69)
Any adverse event	67 (97.1)
Treatment related	43 (62.3)
Grade ≥3 adverse event	35 (50.7)
Treatment related	4 (5.8)
Serious adverse event	20 (29.0)
Treatment related	0
Adverse event leading to	
Dose hold	23 (33.3)
Treatment related	6 (8.7)
Dose reduction	4 (5.8)
Treatment discontinuation	5 (7.2)
Death	0
Any dose-limiting toxicity	0

Most Frequent Adverse Events

Pharmacokinetics and Pharmacodynamics Target Engagement Confirmed by SMARCA2 Reduction

Pharmacodynamic Effect on SMARCA2 Levels in PBMCs by Dose

Pharmacodynamic effect is more prolonged than pharmacokinetics Increasing doses show deeper and more prolonged pharmacodynamic effects

Tumor SMARCA2 Degradation Confirms Target Engagement and Selectivity

41-year-old female with ovarian cancer with missense SMARCA4 class 2 mutation receiving 500 mg PRT3789 monotherapy. Fresh baseline and on-treatment lung biopsies taken 23 days apart. On-treatment biopsy taken on C2D2, **1-day postdose**.

H-Score: 300 Percent positive cells: 100% H-score 295 Percent positive cells: 100%

- **Selective degradation of SMARCA2 in** tumor tissue
- 99% decrease in SMARCA2 expression (H-score) with treatment

Change in Tumor Burden in Patients With NSCLC or Upper GI Cancer

Duration of Treatment in Patients With NSCLC or Upper GI Cancer With a Class 1 Mutation

Efficacy Evaluable Population

Response Rate in NSCLC or Upper GI Cancer Efficacy Evaluable, With Class 1 Mutations

Patients With Class 1 SMARCA4 Mutations

Response Rate	PRT3789 Doses <283 mg (n=19)	PRT3789 Doses ≥283 mg (n=13)	All Doses (n=32)
Objective response rate, n (%)	2 (10.5)	3 (23.1)	5 (15.6)
95% CI	1.3, 33.1	5.0, 53.8	5.3, 32.8
Best overall response, n (%)			
PR	2 (10.5)	3 (23.1)	5 (15.6)
SD	7 (36.8)	3 (23.1)	10 (31.3)
PD	8 (42.1)	5 (38.5)	13 (40.6)
Symptomatic deterioration	2 (10.5)	2 (15.4)	4 (12.5)
Duration of follow-up, ^a weeks			
Median	50.9	18.9	36.8
Min, max	31.7, 82.7	13.7, 32.7	13.7, 82.7

Examples of Responses in NSCLC

Patient 1

Baseline Week 12

- 72-year-old man with metastatic, poorly differentiated carcinoma of the lung with squamous differentiation
- Class 1 *SMARCA4* splice-site alteration (c1246-2A>G)
- Prior therapy included carboplatin/paclitaxel and carboplatin/pemetrexed/pembrolizumab, followed by progression
- Started on PRT3789 283 mg
- RECISTv1.1 PR on second follow-up scan, with reduction in liver, adrenal, and lymph nodes

Patient 2

- 72-year-old man with moderately well-differentiated lung adenocarcinoma. Metastases to brain and malignant pleural effusion and ascites
- Class 1 SMARCA4 splice variant (c3874-1G>T)
- Prior therapy included carboplatin, pemetrexed, pembrolizumab, followed by progression
- Started on PRT3789 283 mg
- RECISTv1.1 PR on first follow-up scan, with reduction in lung, lymph node, pelvic lesions, and resolution of ascites

Example of Responses in Esophageal and Gastric Cancer

Patient 3

Patient 4

Baseline

- 53-year-old man with metastatic, poorly differentiated esophageal carcinoma with squamous differentiation
- SMARCA4 deletion-frameshift (c2732delG, pG911fs)
- Prior therapy included cisplatin, 5-FU, pembrolizumab, followed by progression
- Started on PRT3789, 24 mg
- Partial response on first follow-up scan, with reduction in liver, adrenal, and lymph node lesions

- 78-year-old woman with metastatic, poorly differentiated adenocarcinoma of the stomach
- SMARCA4 missense mutation in ATPase domain
- Prior therapy included FLOT, gastrectomy, FOLFOX + nivo, FOLFOX + ramucirumab, followed by progression
- Started on PRT3789, 500 mg
- Partial response on first follow-up scan

Study Schema and Enrollment Docetaxel + PRT3789

Demographics and Disease Characteristics Docetaxel + PRT3789

Demographics and Disease Characteristics

Characteristics	Patients (N=11)
Age, years	
Median	65
Sex, n (%)	
Male	8 (72.7)
Female	3 (27.3)
Prior lines of systemic anticancer therapy, n	
Median (min, max)	1 (1, 6)
Tumor type, n (%)	
Non-small cell lung cancer	5 (45.5)
Pancreatic cancer	2 (18.2)
Esophageal cancer	1 (9.1)
Large cell neuroendocrine cancer	1 (9.1)
Stomach	1 (9.1)
Thoracic SMARCA4 deficient undifferentiated	1 (9.1)
Type of SMARCA4 mutation, n (%)	
Class 1 (loss of function)	8 (72.7)
Class 2 (missense, VUS)	3 (27.3)

Adverse Events Docetaxel + PRT3789

Summary of Adverse Events

Adverse Events, n (%)	PRT3789 + Docetaxel (N=11)
Any adverse event	11 (100.0)
PRT3789 treatment related	7 (63.6)
Docetaxel treatment related	11 (100.0)
Grade ≥3 adverse event	8 (72.7)
Serious adverse event	4 (36.4)
PRT3789 treatment related	0
Docetaxel treatment related	1 (9.1)
Adverse event leading to	
PRT3789 dose hold	8 (72.7)
PRT3789 treatment related	2 (18.2)
Docetaxel dose hold	8 (72.7)
Dose reduction ^a	1 (9.1)
Treatment discontinuation	0
Death	0
Any dose-limiting toxicity	2 (18.2)

Most Frequent Adverse Events

^a Patient had both docetaxel dose hold and dose reduction.

Summary and Conclusions

- PRT3789 represents a first-in-class, novel, targeted therapeutic designed to induce synthetic lethality in *SMARCA4*-deficient cancer, while sparing normal tissue
- PRT3789 monotherapy demonstrates an acceptable safety profile, with no dose limiting toxicities or study drug-related SAEs to date. The safety profile of PRT3789 in combination with docetaxel consistent with the safety profile of docetaxel alone
- Degradation of SMARCA2 was observed in PBMCs and tumor tissue confirming target modulation
- First early clinical proof of concept in effectively drugging SMARCA2 was demonstrated by tumor responses and prolonged stable disease in patients with NSCLC, esophageal, and gastric cancer
- Dose escalation is ongoing in monotherapy and combination with docetaxel, with the optimal RP2Ds still to be identified
- A clinical trial testing the combination of PRT3789 and pembrolizumab has initiated (NCT06682806)
- Prelude Therapeutics Incorporated is also developing an oral, selective SMARCA2 degrader to treat SMARCA4-deficient cancer (PRT7732). A phase 1 study of PRT7732 in patients with SMARCA4-deficient solid tumors is underway (NCT06560645)

Acknowledgments

- We would like to thank the study patients, families, investigators, coordinators, and healthcare staff at each study site for participating in study PRT3789-01
- This study is sponsored by Prelude Therapeutics Incorporated
- Medical writing support was provided by Miriam Cohen, PhD, ISMPP CMPP™ of Team9Science, funded by Prelude Therapeutics Incorporated