Brain Penetrant CDK4/6 Inhibitor PRT3645 Demonstrates Anti-tumor Activity and Enhances Survival in Glioblastoma and Breast Cancer

Brain Metastasis Models

Ashleigh Juwarkar, Yang Zhang, Andrew Buesking, Min Wang, Dave Rominger, Joseph Raper, Stefan Riepp, Kiran Galghache, Yue Zou, Mike Cori, Xiaowei Yu, Sarah Pawley, Ryan Holmes, William Cowen-MacDonald, Kris Vaddi, Andrew Combis, Bruce Ruggieri, Peggy Scherle

Prelude Therapeutics Incorporated, Wilmington, DE; 2Quanta Therapeutics, Malvern, PA; contact: ajuvekar@preludetx.com

Background

- Cell-cycle deregulation is hallmark of cancer and cycle-dependent kinase (CDK) inhibitors specifically inhibit CDKs at different cell-cycle phases to halt the progress of the cell cycle.
- CDK4/6 inhibitors are the first and only class of highly specific, CDK inhibitors approved for cancer treatment indications.
- CDK4/6 inhibitors have transformed the treatment paradigm of estrogen receptor-positive (ER+), human epidermal growth factor receptor 2-overexpressing (HER2+) breast cancer, with three CDK4/6 inhibitors currently approved in the US.

Objective

To profile the biochemical pharmacological activity of PRT3645, a brain-penetrant CDK4/6 inhibitor, both in vitro and in vivo in various cancers, including GBM and BCBM, as a single agent as well as in combination with existing cancer treatments.

Key Findings

- PRT3645 inhibits cellular phosphorylation of metastasates (Ki) protein with low nanomolar activity.
- PRT3645 treatment resulted in inhibition of cell proliferation of various tumor types with most cell lines showing an IC50 of <100 nM.
- PRT3645 was well-tolerated and highly efficacious in a xenograft model of breast cancer as well as ER+ and HER2+ models of glioblastoma (GBM) and breast cancer brain metastases (BCBM).

Results

Figure 1: PRT3645 Is a Potential and Selective CDK4/6 Inhibitor With High Brain Penetration Compared With Approved CDK4/6 Inhibitors

- PRT3645 is a potent and selective CDK4/6 inhibitor with high brain penetration compared with approved CDK4/6 inhibitors. PRT3645 is an orally bioavailable, brain penetrant, and potent CDK4/6 inhibitor with >1000-fold selectivity over CDKs 1-7, 9, and 12.

Methods

- CyclinD-CDK4/6-Rb-E2F Pathway
 - Breast cancer and glioblastoma cells were seeded at 100,000 cells/well in 6-well plates, incubated for 24 hours with PRT3645. Actin was used as a control for equal loading and stability of protein levels in the cell line.

Conclusions

- PRT3645 is an orally bioavailable, brain penetrant, and potent CDK4/6 inhibitor with >1000-fold selectivity over ER+ breast cancer cells and GBM cells.
- Across various tumor types, PRT3645 reduced cell viability with the majority of cell lines showing an IC50 of <100 nM.
- PRT3645 is highly effective in reducing cell viability of various tumor types in an in vitro panel (Cell Proliferation) Cell Proliferation Assay.
- Cells were seeded in a 24-well plate, and PRT3645 was serially diluted 3.125% from the highest tested concentration of 20 nM and assayed (CisScreen™ Cell proliferation assay) over two concentrations with a maximum assay concentration of 0.1% DMSO. Automated fluorescence microscopy was carried out using Enhanced Luminol Chemiluminescence (ELC) and brightness corrected to fluorescent intensity (FI) with high content imaging, and images were analyzed with Metaphosphor® 5.3.0.1 software.
- Figure 2: PRT3645 Inhibits Cellular Phosphorylation of Rb With Low Nanomolar Activity
 - Cells were treated in a concentration-dependent manner, and western blotting analysis was performed for pRb 807/811 and pRb 708 in cells treated for 24 hours with PRT3645. Actin was used as a control for equal loading and stability of protein levels in the cell line.
 - Downregulation of pRb, reduction in S-phase of the cell cycle, and potent inhibition of cell proliferation were observed with PRT3645 treatment. Figure 3: PRT3645 Is Highly Effective in Reducing Tumor pRb in a Single-Dose PK/PD Study in a U-87 MG Subcutaneous GBM Model
 - A U-87 MG subcutaneous GBM xenograft model was established by injecting cancer cells (3.0×10⁶ cells/mouse, with 50% Matrigel™) subcutaneously in the right flank of female nude mice. Animals were treated with an escalating dose of PRT3645, and treated tumors were examined at the 12th hour post-treatment, SD, single dose, PK/PD pharmacokinetics.

- CyclinD-CDK4/6-Rb-E2F Pathway
 - Breast cancer and glioblastoma cells were seeded at a 96-well plate, and PRT3645 was dispersed using a Tecan 760 μL liquid handling robot. After a 24-hour incubation, cell viability was measured using a Cell counting kit-8 (CCK-8) colorimetric assay that measures activity of dehydrogenases in cells which is directly proportional to the number of living cells. IC50 values were calculated by using GraphPad Prism 5.1.1 software.

- Figure 4: PRT3645-Treated Breast Cancer Cells Show Cell Cycle Inhibition With A Strong Reduction In the S-Phase
 - Cells were treated with PRT3645 in a concentration-dependent manner for 24 hours. Cell cycle phases (G0, G1, and G2/M) were measured by Propidium iodide (PI) and 7-aminoactinomycin D DNA dye (DAPI) staining. Total flux data were evaluated using flow cytometry, and the data were processed using FlowJo software. (A) Breast cancer cells. (B) Glioblastoma cells.