

Background

- Transcriptional addiction is a common feature and a therapeutic vulnerability in many cancers. • Transcription-associated cyclin-dependent kinases (CDKs), like CDK9, are exploitable therapeutic targets for
- developing novel treatment strategies for transcriptionally-addicted cancers. • CDK9 interacts with the positive transcription elongation factor b (P-TEFb), phosphorylates RNA polymerase II at
- Serine 2, and promotes transcriptional activation.
- CDK9 cooperates with multiple transcription factors, like c-Myc, NF-κB and the androgen receptor (AR). CDK9 stabilizes AR-associated proteins in prostate cancer, and CDK9 inhibition can overcome transcriptional addiction and AR-dependency and inhibit the downstream transcriptional programs driving tumorigenesis, stemness and treatment resistance.
- This study evaluates the novel and highly selective CDK9 inhibitor PRT2527 in preclinical models of prostate cancer, assessing the effects on cell proliferation, stem-like tumor cells, 3D organoid development, and tumor growth in mice, along with the drug's ability to inhibit the anticipated molecular targets both in vitro and in vivo.

Figure 1. Anti-proliferative activity of PRT2527 in prostate cancer cell **lines.** Bottom, table of IC_{50} calculated for the different cell lines. Data are mean \pm SD.

LNCaP-abl LNCaP-abl 22Rv1 22Rv1 VCaP VCaP 120-፟ 100-0 10 25 0 10 25 PRT2527 (nM) PRT2527 (nM) LuCaP 145.2 0 20 50 100) 20 50 0 10 25 50 PRT2527 (nM) PRT2527 (nM) PRT2527 (nM) PRT2527 (nM)

Figure 3. PRT2527 reduces growth of 3D organoid cultures of prostate cancer cell lines (top panels), mouse-derived (ERG-PTEN) and **PDX-derived (LuCaP 145.2) organoids (bottom panels).** Right, representative images of organoid cultures. Data are mean ± SD. * p ≤ 0.05; ** p ≤ 0.01; **** p ≤ 0.0001.

PRT2527 inhibits the proliferation of androgen-dependent (i.e., LNCaP, VCaP) and androgen-independent (i.e., DU145, PC3, 22Rv1, LNCaP-abl) prostate cancer cell lines, tumor-sphere formation by stem-like tumor cells, and in vitro growth of tumor organoids from cell lines, patient-derived xenografts (PDXs) and ERG/PTEN transgenic mice.

PRT2527, a novel highly selective cyclin-dependent kinase 9 (CDK9) inhibitor, is active in preclinical models of prostate cancer

Elisa Federici¹, Gianluca Civenni¹, Aleksandra Kokanovic¹, Giada Sandrini^{1,2}, Luca Guarrera³, Simone Mosole¹, Alessia Cacciatore¹, Valeria Uboldi¹, Manuel Lessi¹, Giovanni Papa¹, Domenico Albino¹, Elisa Storelli¹, Jessica Merulla¹, Andrea Rinaldi¹, Marco Bolis^{1,2,3}, Yang Zhang⁴, Kris Vaddi⁴, Peggy Scherle⁴, Bruce Ruggeri⁴, Giuseppina M. Carbone¹, Carlo V. Catapano¹

¹Institute of Oncology Research (IOR), Università della Svizzera italiana (USI), Bellinzona, Switzerland; ³Istituto di Ricerche Farmacologiche 'Mario Negri' IRCCS, Milano, Italy; ⁴Prelude Therapeutics Incorporated, Wilmington, DE

Figure 2. PRT2527 inhibits tumorigenic stem-like cells in tumor-sphere forming assays in vitro. Data are mean ± SD. * $p \le 0.05$; ** $p \le 0.01$; **** $p \le 0.0001$.

#4571

Figure 10. PRT2527 reduces phosphorylation of RNA Polymerase II at Serine 2 (pSer2RNAPII) in DU145

